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An analytical study is presented for an one-dimensional, steady-state plasma bound between two

perfectly absorbing walls that are biased with respect to each other. Starting from a description of

the plasma sheaths formed at both walls, an expression relating the bulk plasma potential to the

wall currents is derived, showing that the plasma potential undergoes an abrupt transition when

currents cross a critical value. This result is confirmed by numerical simulations performed with a

particle-in-cell code. [http://dx.doi.org/10.1063/1.4745863]

I. INTRODUCTION

At the edge of magnetically confined fusion plasmas, at

the interface between spacecraft and space plasmas, in the

fabrication of semiconductor devices, and wherever a plasma

interacts with a solid surface, the plasma-wall transition is

characterized by the presence of a non-neutral sheath, which

extends over a few Debye lengths. The existence of the

sheath ensures that quasi-neutrality is maintained in the

plasma bulk by a strong electric field, typically leading to no

net current to the walls.

A more complicated situation is present when a region

of the wall in contact with the plasma is electrically biased

with respect to the rest of the wall. Time-independent biasing

is used in plasma experiments for different purposes, namely

for the measure of the ion and electron temperatures with

electrostatic probes,2,3 in plasma thrusters for space propul-

sion,4 to study the effect of shear flow on turbulence,6–9 for

the study of dust particles,5 and for the control of turbulence

in magnetic fusion devices.10–12 A bias may induce local per-

turbations of the plasma potential. Electric fields are then

produced and can give rise to plasma currents, which may

close at the sheath. A commonly shared feature in biasing

experiments is that the plasma potential sets its value in

between two surface potentials (see, e.g., Ref. 3). While in

some relatively simple cases, the underlying physical mecha-

nism has been understood,13 the exact general relation

between the currents measured at the sheaths, the applied

bias, and the resulting potential in the plasma bulk is not

well established, and remains to date a challenging general

problem of plasma physics.14

The goal of the present article is to address this problem

in a relatively simple framework, focusing on a one-

dimensional, steady-state, plasma bound between two per-

fectly absorbing walls that are biased with respect to each

other. In particular, we derive an analytical expression relat-

ing the bulk plasma potential with the wall currents, showing

that the plasma potential undergoes an abrupt transition

when currents cross a critical value. This result is confirmed

by numerical simulations performed with a particle-in-cell

(PIC) code.

The electrostatic potential established in the plasma

bulk depends on the interplay between sheaths driving differ-

ent currents to the walls. Typically, sheaths are positive

space-charge layers forming a potential barrier,

gse ¼ eð/se � /wÞ=Te > 0, which prevents most of electrons

from flowing out. Here, /se and /w are, respectively, the

potentials at the sheath edge and at the wall, and Te is the

electron temperature. An enormous research effort on these

sheaths, called ion sheaths, has been carried out in the past

decades (see Ref. 1 for a review). Standard sheath theory

shows that the sheath current I is such that Iel
sat < I < Iion

sat for

gse > 0, where Iion
sat ¼ ensecs > 0 is the ion saturation current

and Iel
sat ¼ �ense

ffiffiffiffiffiffiffiffi
2=p

p
vthe < 0 is the electron saturation cur-

rent, with nse the sheath edge density, cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
and

vthe ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=me

p
. When a strong positive bias is locally

applied with a probe or at the wall confining the plasma, the

formation of negative space-charge sheaths or electron
sheaths is observed.3,10,13 In the case of the electron sheath,

a potential barrier gse < 0 accelerates electrons and prevents

most of ions from arriving at the wall (Figure 1). As a matter

of fact, biasing experiments often show that the plasma is

bound between an ion and an electron sheath. This is the

plasma scenario that we consider in the present paper, which

starts with the analysis of the ion and electron sheaths, shed-

ding new light on their properties. These results are then

used to describe the interplay between the two sheaths and

their effect on the bulk plasma potential.

The article is organized as follows. In Sec. II, we ana-

lyse the plasma dynamics in both ion and electron sheaths,

deriving the ion and electron velocities at the sheath edge.

These results are used in Sec. III to describe a plasma bound

between two biased walls. We derive an analytical expres-

sion relating the plasma potential, the wall currents, and the

applied bias. We find that the plasma potential undergoes an

abrupt transition when currents cross a given critical value.

In Sec. IV, the analytical predictions are numerically verified

by using a PIC code. In the final discussion and conclusion,

Sec. V, we discuss the implications of our predictions on

biasing experiments.

II. SHEATHS

The goal of the present section is to find the ion and

electron velocities at the sheath entrance in the case of per-

fectly absorbing walls. We consider separately the ion and
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the electron sheaths, i.e., gse > 0 and gse < 0, respectively.

The results presented herein are valid for unmagnetized plas-

mas as well as for magnetized plasmas when the magnetic

field is perpendicular to the walls. We also note that in the

following, we consider singly charged ions.

A. Ion sheaths

Let us first consider a plasma in contact with an absorb-

ing wall in the case of an ion sheath where gse > 0 (Fig.

1(a)). In this situation, the ion and electron velocities at the

sheath edge were recently derived in the limit of cold ions.15

We now extend the results to the case of finite ion

temperature.

In the presence of a monotonic ion sheath, the electron

fluid velocity in the direction normal to the wall is given by

Ve ¼
vtheffiffiffiffiffiffi

2p
p

IðgÞ
e�g ¼ cs

IðgÞ e
K�g; (1)

where cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te1=mi

p
; K ¼ log

ffiffiffiffiffiffiffiffiffiffiffi
l=2p

p
; l ¼ mi=me and

IðgÞ ¼ ½1þ erfð ffiffiffigp Þ�=2. Here, gðxÞ ¼ eð/ðxÞ � /wÞ=Te1 is

the normalized potential relative to the wall such that

gð0Þ ¼ 0 and Te1 is the electron temperature far from the

wall (in the bulk plasma). Equation (1) results from comput-

ing the first moment of the electron distribution function,

which is a truncated Maxwellian in the proximity of a per-

fectly absorbing wall.15 Notice that the spatial dependence

of Ve is contained in the potential g. We now consider the

continuity equations for ions and electrons and the momen-

tum equation for ions, which in steady state are

ni
@Vi

@x
þ Vi

@ni

@x
¼ Spi;

ne
@Ve

@x
þ Ve

@ne

@x
¼ Spe;

miniVi
@Vi

@x
¼ �eni

@/
@x
� @

@x
ðniTiÞ þ Smi:

(2)

The particle and momentum sources of species a; Spa,

and Sma are related to the injection of particles, ionization

processes, or collisions. System (2) can be reduced to a ma-

trix equation. First, the term @xVe can be evaluated as

@xVe ¼ @/Ve@x/; and from Eq. (1), it follows that

@/Ve ¼ �ðeVe=Te1Þ½1þ e�g=2
ffiffiffiffiffiffi
pg
p

IðgÞ�. Second, the term

related to the ion pressure, @xðnTiÞ can be simplified by

assuming that the ion fluid expands (accelerates) adiabati-

cally, namely without heat exchange. This leads to

dðn1�c
i TiÞ=dt ¼ 0 and thus @xðniTiÞ ¼ cTi@xni, where the

coefficient c is given by the kinetic theory of gases as

c ¼ ð� þ 2Þ=�; � being the number of degrees of freedom of

the particles (for one-dimensional flow c ¼ 3). Finally, we

note that in the presheath and up to the sheath entrance,

quasi-neutrality is preserved and the condition ne ¼ ni ¼ n
has to be fulfilled. Therefore, our system of equations can be

reduced to a matrix equation M~X ¼ ~S, where

~X ¼
@xn
@xVi

@x/

0
@

1
A; ~S ¼

Spi

Spe

Smi

0
@

1
A; (3)

and

M ¼
Vi n 0

Ve 0 n@/Ve

cTi minVi en

0
@

1
A: (4)

In the presheath region, gradients are typically small and

are due to the presence of the plasma source. At the sheath

edge, gradients become much larger, i.e., jMabXbj � jSaj for

all a; b such that Mab 6¼ 0. In other words, at the sheath edge,

the source terms are much smaller than the other terms in the

fluid equations, and System (2) reduces to M~X ’ 0. The

presence of non-zero gradients imposes detðMÞ ¼ 0, which

defines the position of the sheath edge. We note that

detðMÞ ¼ 0 is also a valid definition of the sheath edge in

the particular case of a source-free system. In this case,

M~X ¼ 0 is satisfied everywhere in the presheath and the

macroscopic quantities display flat profiles, ~X ¼ 0, up until

the sheath entrance,16 where gradients become non zero,

therefore still requiring detðMÞ ¼ 0. Hence in all cases,

detðMÞ ¼ 0 at the sheath entrance, which gives

FIG. 1. Example of potential drop g as a

function of the distance to the wall for an

ion sheath (left) and an electron sheath

(right). Indicated are the electrostatic poten-

tial far from the wall (g1), at the sheath

edge (gse), and at the wall (gw ¼ 0). Plots

are obtained with the PIC code described in

Sec. IV.
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Vi;se ¼ cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ jðgseÞ
þ fi

s
; (5)

where the function j is defined as

jðgÞ ¼ e�g

2
ffiffiffiffiffiffi
pg
p

IðgÞ (6)

and represents the kinetic effect of the depleted Maxwellian

electron distribution function.15 This effect becomes impor-

tant when g! 0, while it vanishes for g!1. Also, we

define

fa ¼ c
Ta;se

Te1
; (7)

which represents the effect of a finite-temperature fluid of

species a expanding adiabatically. We note that fi is related

to the presheath density drop. In the case of adiabatic flow,

in fact, Ti;se=Ti1 ¼ ~nc�1
se , where ~nse ¼ nse=n1 is the sheath

edge density normalized to the bulk plasma density n1.

Therefore, fi ¼ cs~nc�1
se where s ¼ Ti1=Te1. As a conse-

quence, fi ! 0 for s! 0, and thus Eq. (5) reduces to the

Bohm criterion, Vi ¼ cs, in the limits gse !1 and s ¼ 0.

Another well-known result is retrieved by considering

the limit gse !1 for arbitrary s, which gives

Vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTe1 þ cTi;seÞ=mi

p
.18

Equations (1) and (5) provide the ion and electron veloc-

ities at the entrance of ion sheaths. In particular, one can

obtain the so-called floating potential, gf , for which the flow

is ambipolar, by solving Vi;se ¼ Ve;se. For s ¼ 0, this gives

gf ’ K.

B. Electron sheaths

Let us now consider the case of an electron sheath,

namely gse < 0 (Fig. 1(b)). In this case, electrons are acceler-

ated through the sheath electric field and are all absorbed,

while ions are repelled unless they are sufficiently energetic

to overcome the sheath potential barrier, a situation that

is reversed with respect to ion sheaths. Therefore, the ion

fluid velocity in the direction normal to the wall can be

expressed as

Vi ¼
vthiffiffiffiffiffiffi

2p
p

Iðjgj=sÞ
e�jgj=s ¼ cs

ffiffiffi
s
p

Iðjgj=sÞ e
�jgj=s ; (8)

where jgðxÞj=s ¼ eð/w � /ðxÞÞ=Ti1.

In steady state, the continuity equations for electrons

and ions, and the momentum equation for electrons are

ne
@Ve

@x
þ Ve

@ne

@x
¼ Spe;

ni
@Vi

@x
þ Vi

@ni

@x
¼ Spi;

meneVe
@Ve

@x
¼ ene

@/
@x
� @

@x
ðneTeÞ þ Sme:

(9)

As before, the term @xVi in System (9) can be evaluated

as @xVi ¼ @/Vi@x/, and @/Vi can be obtained from Eq. (8).

The quasi-neutrality in the presheath and the adiabaticity of

the electron flow lead to a matrix equation M~X ¼ ~S, where

~X ¼
@xn
@xVe

@x/

0
@

1
A; ~S ¼

Spe

Spi

Sme

0
@

1
A; (10)

M ¼
Ve n 0

Vi 0 n@/Vi

cTe menVe �en

0
@

1
A: (11)

As for the ion sheath, the conditon detðMÞ ¼ 0 sets the

sheath entrance, namely

Ve;se ¼ vthe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

1þ jðjgse=sjÞ
þ fe

r
: (12)

We notice that the electron velocity at the sheath entrance

is of the order of the thermal velocity, vthe, since all electrons

are absorbed. In fact, in the limit s! 0, Eq. (12) gives

Ve ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cTe;se=me

p
� vthe. The quantity fe can also be related

to the presheath density drop by using the assumption of adia-

batic flow, i.e., Te;se=Te1 ¼ ~nc�1
se , which leads to fe ¼ c~nc�1

se .

Equations (8) and (12) provide the ion and electron

velocities at the entrance of electron sheaths. As a final

remark, we mention that in the limit gse ! 0, both electron

and ion sheaths disappear and the electron and ion velocities

at the wall are given by Eqs. (1) and (8), respectively.

III. PLASMA BETWEEN TWO BIASED WALLS

Let us now consider the situation of an one-dimensional,

steady-state plasma bound in between two perfectly absorb-

ing walls. Let us call /l
w and /r

w the potentials of the left and

right walls and denote with d ¼ eð/r
w � /l

wÞ=Te1 > 0 the

bias applied between the walls. From now on, we use the left

wall as the reference for the normalized plasma potential,

namely, gðxÞ ¼ e½/ðxÞ � /l
w�=Te1. In order to maintain a

steady-state, a source replenishes the plasma that is continu-

ously lost at both ends due to the sheath condition. In partic-

ular, the plasma source may be non-neutral and currents may

be established at the sheaths in order to ensure quasi-

neutrality in the plasma bulk. This situation is very common

in biasing experiments, where plasma currents feed the bi-

ased region by acting as non-neutral sources. These currents

are eventually closed at the sheaths.10

Two situations may be observed depending on the elec-

tric charge introduced by the source, see Fig. 2. If the plasma

source is such that Si � Se, the plasma potential stays always

above the highest wall potential /r
w, and ion sheaths are pres-

ent on both sides. On the left side, the sheath edge potential

is above the floating potential, leading therefore to an ion

current, jCij > jCej, where Ca ¼ na;seVa;se. On the right side,

the sheath edge potential is such that the current established

maintains the quasi-neutrality. If the source is negatively

charged, Si < Se, the potential of the plasma bulk approaches

/r
w in order for the sheath to evacuate the excess of electrons

(see Fig. 2). If the negative source is strong enough, the

plasma potential sets its value below /r
w. In this regime, an
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ion sheath is established on one wall, while an electron

sheath is present on the other wall. This situation is found in

many experiments where a positive bias is applied (see, e.g.,

Refs. 3, 10, and 13). In the following, we focus on this par-

ticularly interesting regime. We derive an expression relating

the bulk plasma potential, the bias, and the wall currents, by

using the results of Sec. II.

We consider the steady-state charge balance of an one-

dimensional plasma bound between two biased walls, in the

presence of a non-neutral plasma source. We define Jie as the

ratio between the ion and electron sources,

Jie ¼
Ð L

0
SidxÐ L

0
Sedx

; (13)

where L is the size of the system. From the steady-state con-

tinuity equation for ions and electrons, it follows that Jie is

also equal to the ratio between the total ion outflux and the

total electron outflux,

Jie ¼
Cr

iw � Cl
iw

Cr
ew � Cl

ew

¼ jC
r
iwj þ jCl

iwj
jCr

ewj þ jCl
ewj

; (14)

where Cl
aw ¼ nl

awVl
aw and Cr

aw ¼ nr
awVr

aw are the particle

fluxes at the left and right walls. These are all outflowing,

i.e., Cl
aw < 0 and Cr

aw > 0.

We assume that inside the sheaths, the effect of SiðxÞ
and SeðxÞ can be neglected. This can be quantified as

Sa � nsexpi, where xpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2nse=�0mi

p
is the ion plasma

frequency. This condition is derived by imposing Sa �
Va@xn and taking Va � cs and @x � 1=kD. As a consequence,

the particle fluxes are conserved inside the sheaths and thus

we can write Cl
aw ¼ Cl

ase and similarly for the right wall. The

fluxes in Eq. (14) are, therefore, given by the fluxes at each

sheath edge, and one can make use of the ion and electron

velocities at the sheath entrance derived in Sec. II, i.e., Eqs.

(5) and (8) for the ions, and Eqs. (1) and (12) for the elec-

trons, to derive a relation between Jie and the potential in the

plasma bulk.

For this purpose, we assume L to be much larger than

the sheath length, L� kD. This allows us to consider the

main plasma as infinitely far from both walls, defining the

bulk plasma potential as g1 ¼ gðL=2Þ and its density as

n1 ¼ nðL=2Þ. We further assume that the normalized bias is

large, namely, d ¼ eð/r
w � /l

wÞ=Te1 � 1, such that the pre-

sheath potential drop can be neglected with respect to the

sheath potential drop. It follows that the sheath potential bar-

rier at the left wall is g1 > 0 (ion sheath) and that at the

right wall is g1 � d < 0 (electron sheath). We recall that

this situation corresponds to the bottom curve of Fig. 2.

Using Eqs. (1), (5), (8), and (12), and Cl;r
aw ¼ Cl;r

ase, we can

write Eq. (14) as

Jie ¼
1ffiffiffi
l
p

~nl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þjðg1Þ
þ cs~nc�1

l

q
þ ~nr

ffiffi
s
p

e�ðd�g1Þ=sffiffiffiffi
2p
p

Iððd�g1Þ=sÞ

~nl
e�g1ffiffiffiffi
2p
p

Iðg1Þ
þ ~nr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

1þjððd�g1Þ=sÞ
þ c~nc�1

r

q : (15)

Here, ~nl ¼ nl
se=n1 and ~nr ¼ nr

se=n1 are the sheath edge

densities at the left and right sides normalized to the bulk

density, and the identity cs=vthe ¼ 1=
ffiffiffi
l
p

has been used.

Equation (15) directly relates Jie to g1, and it is valid for

0 < g1 < d, which corresponds to the regime of an ion

sheath on one wall and an electron sheath on the other wall.

Six parameters modulate the function Jieðg1Þ, namely

l; s; d; c; ~nl, and ~nr. Figure 3 shows the bulk plasma poten-

tial as a function of Jie as given by Eq. (15), for different val-

ues of s and ~nl=~nr.

It is interesting to note that in all cases, there is an abrupt

transition of the plasma potential occurring around a critical

value of the current ratio Jie. This can be explained as fol-

lows. When the bulk plasma potential is g1 ’ d, the current

at the left wall is due to ions entering the sheath at approxi-

mately the sound speed, while the current at the right wall is

fundamentally due to electrons entering at approximately the

thermal speed, thus giving Jie ’ 1=
ffiffiffi
l
p

. As a matter of fact,

the right sheath draws electrons at about the thermal speed

regardless of the value of g1, if g1 < d, since no potential

barrier prevents them from being absorbed. On the other

hand, the left sheath draws ions at about the sound speed and

electrons at a speed that depends on the potential barrier,

since Ve � cs expðK� g1Þ, see Eq. (1). This exponential

dependence explains why g1 must approach the floating

potential gf ’ K in order for the left sheath to start drawing

a significant amount of electron current, therefore changing

the value of Jie. Thus, for gf � g1 < d, the left and right

sheaths, respectively, draw almost the same ion and electron

currents as in the case g1 ’ d, thus explaining the sharpness

of the transition observed in Fig. 3.

The transition in g1 occurs at a certain current ratio

Jie ¼ Jt, which we identify as the current ratio at which

g1 ¼ d=2. A general expression for Jt can be derived from

Eq. (15) by taking simultaneously the limits g1 � 1 and

d� g1 � 1, and it is given by

FIG. 2. Examples of plasma potential profiles gðxÞ for a bias

d ¼ eð/r
w � /l

wÞ=Te1 applied between the two walls. The top curve is for

the case of a neutral plasma source. The middle curve is for a moderately

charged negative source (Si � Se), while the bottom curve is for a strongly

charged negative source (Si � Se). Plots are obtained with the PIC code

described in Sec. IV, in the case of s ¼ 1.
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Jt ¼
1ffiffiffi
l
p

~nl

~nr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cs~nc�1

l

sþ c~nc�1
r

s
: (16)

A weak dependence of Jt on s is found, as displayed in Fig. 3.

Thus,
ffiffiffi
l
p

Jt mainly depends on the ratio of sheath edge den-

sities. Figure 3 shows the dependence of Jt on ~nl=~nr. We can

make a rough estimate of the expected density ratio ~nl=~nr. In

the collisionless, isothermal limit, and neglecting sources and

inertia, the density drop in the presheath is given by the Boltz-

mann factor. Also, in order to accelerate ions to sound speed

(left presheath) and electrons to thermal speed (right pre-

sheath), both presheath potential drops are expected to be

approximately equal to Te1=2. As a consequence, we expect

~nl=~nr ’ 1 for s � 1, implying that Jt ’ 1=
ffiffiffi
l
p

.

On the other hand, the sharpness of the transition is

strongly dependent on the temperature ratio s. In fact, as one

can see in Fig. 3, the smaller the value of s, the steeper is the

approach of g1 to d when Jie > Jt. To quantify this, we con-

sider the limit of Eq. (15) when g1 ! d, which is

lim
g1!d

Jie ¼ Jt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ c~nc�1

r

c~nc�1
r

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s

lpc~nc�1
r

s
: (17)

Equation (17) gives Jt for s ¼ 0, therefore a very sharp

transition, and is a monotonically increasing function of s.

This explains why the potential transition is more abrupt for

small values of s.

We finally remark that the function Jieðg1Þ does not

strongly depend on the value of c, which is expected to lie in

between c ¼ 5=3 (three-dimensional flow) and c ¼ 3 (one-

dimensional flow). Therefore, the value of the transition cur-

rent mainly depends on l and ~nl=~nr, and the sharpness of the

potential transition mainly depends on s.

IV. NUMERICAL SIMULATIONS

In order to confirm the validity of the analytical results

presented in Sec. III, we perform numerical simulations with

the ODISEE (one-dimensional sheath edge explorer) code,15

a fully kinetic, electrostatic PIC code akin to previous simu-

lations.16,17 We simulate an one-dimensional plasma bound

between two absorbing walls at x¼ 0 and x¼L, where L is

much larger than the sheath scale, L� kD. A source of ions

and electrons maintains the plasma in steady-state. Sources

are located in the central region ½L=3; 2L=3� in order to avoid

an influence on the sheath dynamics and are taken to be spa-

tially uniform in this interval. In velocity space, ions, and

electrons are injected according to a Maxwellian distribution

with zero average velocity and temperatures Ti;s and Te;s,

respectively. Notice that, as commonly observed in PIC sim-

ulations,18 the steady state bulk plasma temperatures, Ti1
and Te1, are not necessarily equal to the corresponding

source temperatures, therefore we cannot choose a priori the

value of s ¼ Ti1=Te1. Electrons and ions undergo self-

collisions according to a Fokker-Planck collision operator,19

with a mean free path kmf p smaller than the system size but

much larger than the sheath scale, i.e., L > kmf p � kD. As a

FIG. 3. Normalized main plasma potential g1 as a function of the charge

source ratio Jie as given by Eq. (15) with d ¼ 20; c ¼ 3, and for different

temperature ratios: s ¼ 0:1 (top, black), s ¼ 1 (middle, blue), and s ¼ 3

(bottom, red). Different density ratios are considered: ~nl=~nr ¼ 0:66 (left,

dashed), ~nl=~nr ¼ 1 (middle, solid), and ~nl=~nr ¼ 1:25 (right, dashed-dotted).

FIG. 4. Time averaged profiles of the plasma potential for

eð/r
w � /l

wÞ=Te;s ¼ 20; ss ¼ 1, and for different values of Jie. Top curves

are for
ffiffiffi
l
p

Jie ¼ 1:05; 1:1; 1:3; 1:5. Middle curve is for
ffiffiffi
l
p

Jie ¼ 1. Bottom

curves are for
ffiffiffi
l
p

Jie ¼ 0:95; 0:9; 0:7.
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consequence, particles present a thermalized distribution

function far from the walls, while the sheath remains essen-

tially collisionless. Finally, Poisson’s equation is solved by

imposing the potential at the two boundaries, /ð0Þ ¼ /l
w and

/ðLÞ ¼ /r
w, such that eð/r

w � /l
wÞ=Te;s � 1. The mass ratio

is set to l ¼ 100. Sheath currents can be driven by varying

the relative intensity of the ion and electron sources, there-

fore varying Jie.

Figure 4 shows time-averaged profiles of the plasma

potential from simulations performed with bias eð/r
w

�/l
wÞ=Te;s ¼ 20 and ss ¼ Ti;s=Te;s ¼ 1. A number of simula-

tions are performed for different values of Jie around the esti-

mated transition current ratio, namely, Jt � 1=
ffiffiffi
l
p

as

~nl ’ ~nr. Clearly, an abrupt transition in the plasma potential

is observed when the charge source ratio Jie is slightly varied

around Jie ¼ 1=
ffiffiffi
l
p

, and variations of less than 5% around

this value are enough to bring the potential of the plasma

bulk from one wall potential to the other wall potential. As

discussed in Sec. III, this behavior is mainly due to the expo-

nential dependence of the ion sheath electron current on the

bulk plasma potential.

In Fig. 5, we show the bulk plasma potential as a func-

tion of Jie for different values of ss. The presence of a sharp

transition closely recalls the analytical results of Fig. 3. We

remark that the comparison with the curves in Fig. 3 can

only be qualitative, since a curve with constant ss does not

exactly correspond to a curve with constant s.

In order to accurately verify the general analytical

expression in Eq. (15), we proceed as follows. A set of simu-

lations is performed where ss and Jie are varied. Each pair of

parameters (ss; Jie) produces a certain steady state, from

which /ðL=2Þ; ~nl; ~nr; Ti1, and Te1 are extracted. One can

then obtain the following parameters: s ¼ Ti1=Te1; g1
¼ eð/ðL=2Þ � /l

wÞ=Te1, and d ¼ eð/l
w � /r

wÞ=Te1. Finally,

the theoretical prediction for Jie is computed using Eq. (15)

and compared with the corresponding simulation parameter.

This exercise is carried out for different values of ss and Jie.

Figure 6 shows the results of this comparison, which con-

firms the validity of Eq. (15).

FIG. 5. Steady state plasma potential as a function of Jie, for ss ¼ 0:5 (black

circles), ss ¼ 1 (blue crosses), and ss ¼ 3 (red stars). For all simulations,

eð/r
w � /l

wÞ=Te;s ¼ 20.

FIG. 6. Comparison between the current ratio Jth
ie predicted by Eq. (15) with

c ¼ 3 and the corresponding current ratio Jsim
ie used as a numerical parameter

in the simulation. Labels are the same as in Fig. 5. Dashed line indicates

Jth
ie ¼ Jsim

ie .

FIG. 7. Time averaged profiles of the ion density (solid, blue) and the elec-

tron density (dashed, red) for eð/r
w � /l

wÞ=Te;s ¼ 20 and Jie ’ Jt. (a) ss ¼ 1,

(b) ss ¼ 0:5, and (c) ss ¼ 3. Indicated are the normalized sheath edge den-

sities. The source is located between the two vertical dashed lines.
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We now discuss the dependence of the transition current

ratio Jt on the sheath edge densities ~nl and ~nr . According to

Eq. (16), the value of Jt mainly depends on the mass ratio l
and the density ratio ~nl=~nr. In simulations with ss ¼ 1 ’ s,

the sheath edge densities are about the same on both sides, as

shown in Fig. 7(a). This explains why, in the case displayed

in Fig. 5, the potential transition occurs at Jie ’ 1=
ffiffiffi
l
p

. In

simulations with ss ¼ 0:5, however, the sheath edge den-

sities are not the same on both sides, ~nl � ~nr (see Fig. 7(b)).

Therefore, the potential transition occurs at smaller values of

Jie, as expected from Eq. (16). An opposite trend is observed

in simulations performed with ss ¼ 3, namely ~nl � ~nr (see

Fig. 7(c)). As one can observe in Fig. 7, the density ratios

~nl=~nr are always approximately equal to 1. In particular,

~nl=~nr ’ 0:9 for ss ¼ 0:5, and ~nl=~nr ’ 1:2 for ss ¼ 3. In

Fig. 7, one can also note that the left sheath is positively

charged with ni > ne (ion sheath) and the right sheath is neg-

atively charged with ne > ni (electron sheath).

We finally remark that, in the limit of s ¼ 0, simulations

show an unstable behavior of the bulk plasma potential,

which oscillates between g1 ’ 0 and g1 ’ d. These oscilla-

tions may be due to kinetic instabilities such as the two-

beam instability.20

V. DISCUSSION AND CONCLUSION

When a bias is locally applied with a probe or at the

wall confining a plasma and if the bias is strongly positive

with respect to the potential of the vessel wall, the resulting

plasma potential has a value that is usually between the two

surface potentials. Therefore, an ion sheath forms at one wall

and an electron sheath forms at the other wall. In order to

analyse such plasmas, the ion and electron velocities at the

entrance of both ion and electron sheaths have been rigor-

ously derived. These results have been used to study the case

of an one-dimensional, steady-state plasma bound between

an ion sheath and an electron sheath. An analytical expres-

sion has been derived, relating the bulk plasma potential,

g1, to the ratio of currents drawn at the biased walls, Jie,

through a few parameters, mainly the bias amplitude d, the

mass ratio l, the temperature ratio s, and the normalized

sheath edge densities at both sides, ~nl and ~nr. This analytical

expression has been verified with PIC simulations carried

out with the ODISEE code.

The bulk potential g1 is found to be close to either of

the two wall potentials for most values of Jie and shows an

abrupt transition between these two potentials around a value

Jt � 1=
ffiffiffi
l
p

. While this transition current ratio Jt mainly

depends on l and ~nl=~nr , the shape of the curve g1ðJieÞ is

strongly modulated by s. A setup that would allow the exper-

imental determination of the curve g1ðJieÞ could, therefore,

provide a measure of the ion to electron temperature ratio in

the plasma and constrain the values of l.

The analysis presented in this paper provides a tool to

interpret the results of experiments where a part of the wall

is positively biased. Our results indicate that, in most cases,

the plasma potential has to be close to either of the wall

potentials, depending on whether Jie < Jt or Jie > Jt. In the

particular situation of Jie ’ Jt, we expect that the plasma

fluctuates between the two wall potentials due to possible

slight variations of the sheath currents around Jt.

ACKNOWLEDGMENTS

We acknowledge many useful discussions with

F. Avino, A. Bovet, A. Fasoli, I. Furno, K. Gustafson, and

T.-M. Tran. We also acknowledge financial support by the

Fonds National Suisse de la Recherche Scientifique.

1K.-U. Riemann, J. Phys. D. Appl. Phys. 24, 493 (1991).
2I. H. Hutchinson, Principles of Plasma Diagnostics (Cambridge University

Press, Cambridge, 2002).
3K. M. Frederick-Frost and K. A. Lynch, Phys. Plasmas 14, 123503 (2007).
4E. Ahedo, Plasma Phys. Controlled Fusion 53, 124037 (2011).
5A. Douglass, V. Land, K. Qiao, L. Matthews, and T. Hyde, Phys. Plasmas

19, 013707 (2012).
6T. A. Carter and J. E. Maggs, Phys. Plasmas 16, 012304 (2009).
7D. L. Toufen, Z. O. Guimares-Filho, I. L. Caldas, F. A. Marcus, and K. W.

Gentle, Phys. Plasmas 19, 012307 (2012).
8B. Li, B. N. Rogers, P. Ricci, K. W. Gentle, and A. Bhattacharjee, Phys.

Rev. E 83, 056406 (2011).
9A. G. Lynn, M. Gilmore, C. Watts, J. Herrea, R. Kelly et al., Rev. Sci. Ins-

trum. 80, 103501 (2009).
10C. Theiler, I. Furno, J. Loizu, and A. Fasoli, Phys. Rev. Lett. 108, 065005

(2012).
11D. D. Ryutov, P. Helander, and R. H. Cohen, Plasma Phys. Controlled

Fusion 43, 1399 (2001).
12S. J. Zweben et al., Plasma Phys. Controlled Fusion 51, 105012 (2009).
13S. D. Baalrud, N. Hershkowitz, and B. Longmier, Phys. Plasmas 14,

042109 (2007).
14S. Kuhn, Contrib. Plasma Phys. 34(4), 495–538 (1994).
15J. Loizu, P. Ricci, and C. Theiler, Phys. Rev. E 83, 016406 (2011).
16J. R. Procassini et al., Phys. Fluids B 2, 12 (1990).
17J. R. Procassini et al., Phys. Fluids B 3, 8 (1991).
18P. Stangeby, The Plasma Boundary of Magnetic Fusion Devices (IOP,

Bristol, 2000).
19T. Takizuka, J. Comput. Phys. 25, 205–219 (1977).
20G. G. Comisar, J. Appl. Phys. 38, 905–907 (1967).

083507-7 Loizu et al. Phys. Plasmas 19, 083507 (2012)

Downloaded 20 Aug 2012 to 128.178.125.29. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1088/0022-3727/24/4/001
http://dx.doi.org/10.1063/1.2819674
http://dx.doi.org/10.1088/0741-3335/53/12/124037
http://dx.doi.org/10.1063/1.3677360
http://dx.doi.org/10.1063/1.3059410
http://dx.doi.org/10.1063/1.3676607
http://dx.doi.org/10.1103/PhysRevE.83.056406
http://dx.doi.org/10.1103/PhysRevE.83.056406
http://dx.doi.org/10.1063/1.3233938
http://dx.doi.org/10.1063/1.3233938
http://dx.doi.org/10.1103/PhysRevLett.108.065005
http://dx.doi.org/10.1088/0741-3335/43/10/309
http://dx.doi.org/10.1088/0741-3335/43/10/309
http://dx.doi.org/10.1088/0741-3335/51/10/105012
http://dx.doi.org/10.1063/1.2722262
http://dx.doi.org/10.1002/ctpp.2150340402
http://dx.doi.org/10.1103/PhysRevE.83.016406
http://dx.doi.org/10.1063/1.859229
http://dx.doi.org/10.1063/1.859657
http://dx.doi.org/10.1016/0021-9991(77)90099-7
http://dx.doi.org/10.1063/1.1709452

